
Modelling Context in Conversations for Sentiment Analysis

Rohan Jha
rjha@cs.brown.edu

Varun Mathur
vmathur2@cs.brown.edu

Abstract

We hypothesize that context is helpful for pre-
dicting sentiment in the EmoContext task. We
build and test three models for the task, each
with different representations of the context.
The first is a baseline that takes in a represen-
tation of only the third sentence; the second is
a baseline that takes in representations of the
three sentences; and the third takes in a rep-
resentation of the third sentence, in addition
to a representation of the first two sentences
obtained from a model trained on the objec-
tive of predicting the third sentence from the
first two. We observe that the third model is
outperformed by both baselines, but the first
baseline is outperformed by the second. This
suggests that context is helpful for this task but
doesn’t provide evidence that context is effec-
tively captured by the third model.

Hypothesis

We hypothesize that context is helpful for predict-
ing sentiment; in particular, that in the EmoCon-
text task, the objective of predicting the third mes-
sage from the first two is useful in modeling con-
text, which in turn helps in predicting the senti-
ment of the third message.

1 Background and Motivation

We’re participating in the EmoContext task for
SemEval-2019, in which the objective is to pre-
dict the sentiment of the final text in a conversation
with three texts (as happy, sad, angry, or other).
For example, the following conversation (Gupta
et al., 2017) would be predicted as sad:

1. User 1: I texted you last night!

2. User 2: Sorry, I didn’t see it until now.

3. User 3: Why don’t you ever answer me :/

And the following (Gupta et al., 2017) would be
predicted as happy:

1. User 1: I had a game today.

2. User 2: Did you win?

3. User 3: Yeah!! I’m so happy :)

Sentiment is a critical part of computational se-
mantics, which makes this a relevant task. For a
machine listener, an understanding of sentiment is
indispensable for capturing the semantics of a hu-
man utterance. The two statements ”Sure, I guess”
and ”Yes, I can’t wait” have similar denotations
but different implications about the enthusiasm of
the speaker – and we might want the machine’s
response to differ between the two.

This example is indicative of the difficulty of
this task. As noted above, ”Sure, I guess” and
”Yes, I can’t wait” are equivalent in a model-
theoretic sense and have the same Fregeian refer-
ence (Zalta, 2018). However, they’re different in
their Fregeian sense, which results in a difference
in their sentiment. It might follow from this dis-
tinction that successful models for this task should
capture different conceptions of meaning, includ-
ing sense and reference. In this paper, we claim
that context is also an important part of modelling
these meanings.

The motivation for our hypothesis comes in
part from the organizers’ model for this task (SS-
LSTM), which they claim ”significantly outper-
forms traditional Machine Learning baselines as
well as other off-the-shelf Deep Learning models”
(Gupta et al., 2017). We note that in predicting
the sentiment of the third text, SS-LSTM does not
take into account the first two messages, which
suggests that context might not be useful in this
task. However, the authors themselves write that
SS-LSTM predicts a label of Sad – while the con-



text implies Happy – for the following conversa-
tion (Gupta et al., 2017):

1. User 1: I just qualified for the internship

2. User 2: WOOT! That’s great news. Congrat-
ulations!

3. User 3: I started crying.

This indicates that models of context might have a
role in predicting this example and others.

Our proposal for modelling the context is in line
with the distributional hypothesis. We’re extend-
ing Firth’s notion that words can be ”[known]... by
the company they keep,” (Firth, 1962) to the hy-
pothesis that we can define utterances (in terms of
the context they provide) by the utterance that fol-
lows. The language modeling objective is some-
thing of an instantiation of Firth’s hypothesis, and
our model is inspired by recent work on this ob-
jective (Mikolov et al., 2013). In particular, our
objective is similar to that in SkipThought (Kiros
et al., 2015), with the difference that instead of
jointly predicting the utterances that precede and
follow a single utterance, we predict the utter-
ance that follows a pair of utterances. We believe
this model is more suited to EmoContext because
we’re not interested in the first two sentences in
themselves, merely their role in determining the
semantics of the third.

2 Experimental Design

We test the hypothesis that the task of predicting
the third message from the first two will generate
a useful representation of context, with respect to
predicting the sentiment of the third message. We
outline the primary model, EncodedContext, and
discuss our two baselines, NoContext and Sim-
pleContext.

Each model takes in the ELMo embeddings (Pe-
ters et al., 2018) for the words in the third text –
and possibly some representation of the first two
texts (see the next section for details) – and out-
puts a distribution over sentiment classes.

1. In addition to the embeddings for the third
text, EncodedContext takes in a single vec-
tor that jointly represents the first two texts.
This vector is taken from hidden state of an
encoder-decoder model that’s trained on the
objective of predicting the third text from the
first two.

2. NoContext only takes in the embeddings for
the third text.

3. SimpleContext takes in the embeddings for
the first two texts, in addition to those for the
third.

The shared model is trained on the training
dataset from the EmoContext task. The encoder-
decoder model in the EncodedContext model is
trained on conversations scraped from Reddit, fol-
lowing the approach of Yang, et al. (Yang et al.,
2018) (more discussion below of the data and
training).

We finally evaluate each of the three models by
their performance on the EmoContext task. This
performance is measured in terms of the prediction
accuracy and the F1 score.

3 Implementation Details

3.1 Tokenization and Normalization

Texting data relies heavily on emoji and ASCII
smiley usage, and these might contain important
signal for sentiment tasks.

We found that a large proportion of the emojis
used were part of the “emoticon” subset (a specific
Unicode character range), and there were only a
few common non-emoticons, such as hearts. We
manually created a new class of character called
“emotionicons,” consisting of all emoticons and
other handpicked emojis which we hypothesized
were most important for capturing the useful sig-
nal. We then developed a function that would con-
vert every single “emotionicon” into a correspond-
ing ASCII smiley.

We developed a regex expression to detect
ASCII smileys, for tokenization purposes, but oth-
erwise left these unprocessed. The hope was that
the character-level ELMo embeddings would learn
to recognize the sequences of characters appropri-
ately.

Our preprocessing steps were thus:

1. Remove all non-emotionicon emojis

2. Convert all emotionicon emojis into ASCII
smileys

3. Use a combination of our regex ASCII detec-
tor and the nltk tokenizer (Loper and Bird,
2002) to tokenize sentences while maintain-
ing smileys as single tokens.



3.2 NoContext
ElMo word embeddings are produced for each
word in the third sentence, and combined using a
pooling layer. The resulting sentence embedding
is then passed through a fully connected softmax
classifier. The model is trained on the EmoContext
training set using negative-likelihood loss with the
Adam optimizer and a learning rate of 1e-4.

3.3 SimpleContext
All messages will be passed through the same
ElMo and pooling layers as above in order to ob-
tain sentence embeddings. The three embeddings
are then concatenated, and the result is passed
through the same fully connected log-softmax
classifier. The model is trained on the EmoContext
training set using negative-likelihood loss with the
Adam optimizer and a learning rate of 1e-4, as
above.

3.4 EncodedContext
We model context within the framework of
encoder-decoder models. In our case, the encoder
creates a hidden state representing the contents of
messages 1 and 2, and the decoder uses that hidden
state to generate the third message.

3.4.1 Pretrained Encoder-Decoder
Architecture

• Embedding. After tokenization and normal-
ization (discussed below), the words in mes-
sages 1 and 2 are initialized with their ELMo
representations, with a separator <EOS> to-
ken:

w1
1 . . . w

N
1 ,<EOS>, w

1
2, . . . w

M
2

We settled on using “|” as the <EOS> token
because it’s uncommonly used otherwise but
is often used as a textual separator, which
ELMo might have pretrained knowledge of.
The hope is that this is initially no worse than
a random embedding, and that ELMo will
learn to recognize it later on.

• Encoder. The encoder is a gated recurrence
unit (GRU). A GRU was chosen as it is con-
ceptually simpler and faster to train than an
LSTM, while still providing state-of-the-art
results in many cases. Given some input
embedding wi and the previous hidden state
hi−1, the GRU learns the non-linear function:

hi = f(wi, hi−1)

At the end of the encoding process, we take
the final state. This intuitively represents all
the information contained in the first two sen-
tences.

henc

• Decoder. The decoder is a GRU conditioned
on the hidden state of the encoder that at-
tempts to predict the ELMo embeddings of
the target word. The initial hidden state of
the GRU is set to the final hidden state of the
encoder, henc.

To predict the ith word, the decoder takes
as input its previous hidden state, si−1 and
the previous predicted word wi−1. It first
computes some representation of the previ-
ous word:

wi−1 = αwi−1

It then passes this representation along with
the hidden state through the GRU, which
learns the function:

wi, si = g(wi−1, si−1)

Finally, we learn another function that takes
the word wi into ELMo embedding space:

wi = βwi

• Objective. Most implementations of
encoder-decoder networks in NMT (Neural
Machine Translation) use the final word
prediction of wi = softmax(φxi) to
project to a probability distribution in vocab
space, where the translation would simply be
the one-hot max of this vector.

Since we are not translating and thus not con-
strained with this semantic interpretation of
wi, we learn φ to project into ELMo embed-
ding space. We calculate loss for each predic-
tion based on the cosine-distance of the tar-
get ELMo embedding wi

3 and the predicted
ELMo embedding wi:

1− wi · wi
3

‖wi‖2‖wi
3‖2

This novel approach is important for two rea-
sons:

1. In the text message domain, vocabulary
is very ill-defined and thus character-
level embeddings such as ELMo are es-
sential



2. This allows our model to generalize:
predicting “red” instead of “maroon”
will result in small error which intu-
itively makes sense. This behavior can-
not be accomplished using the one-hot
formulation.

• Training. The Adam optimizer is used, and
the learning rate is 1e-4.

The decoder is trained using “teacher forc-
ing” to cause the model to converge faster. At
each timestep we condition on the real tar-
get’s previous word instead of using the de-
coder’s guess.

• Data. We trained on both the Cornell
Movie-Dialogs Corpus (Danescu-Niculescu-
Mizil and Lee, 2011) and data scraped from
Reddit, though the final model is trained only
on Reddit data.

To scrape the Reddit data, we adapt the ap-
proach of Yang, et al. (Yang et al., 2018)
and Al-Rfou, et al. (Al-Rfou et al., 2016).
We search for triples of three comments, in
which the first comment is a response to the
second comment, and the second comment
is a response to the third comment. We
then remove triples with more than twenty-
five tokens, or with comments that have been
deleted or removed.

3.4.2 EncodedContext Architecture
Once we have pretrained the encoder-decoder
model, we claim that the final hidden state of the
encoder encodes the relevant context of the first
two sentences. We concatenate this context vector
with the same ELMo and pooling sentence em-
bedding in NoContext and then pass the result
through a fully connected softmax classifier. The
model is trained on the EmoContext training set
using negative-likelihood loss with the Adam opti-
mizer and a learning rate of 1e-4, as with the base-
line models.

4 Results

model accuracy F1
EncodedContext 0.636 0.512
NoContext 0.820 0.775
SimpleContext 0.854 0.821

Table 1: Results

In Table 1, we have the accuracy of each of our
three models on the EmoContext task, in addition
to F1 scores for each of the classes. We follow
the organizers’ example (Gupta et al., 2017) and
compute a simple average of the F1 scores for the
classes Happy, Sad, and Angry. With both metrics
we find that SimpleContext outperforms NoCon-
text, but EncodedContext is outperformed by the
two baselines.

These results aren’t directly comparable to
those of the organizers’ model because we don’t
have access to their evaluation dataset. However,
because our validation data is likely sampled from
the same distribution as theirs, we note that our
two baselines have a higher F1 score than that of
their SS-LSTM model (71.34), which doesn’t use
the first two texts. The organizers don’t report the
accuracy of their model.

5 Technical Challenges

Our EncodedContext model didn’t perform as ex-
pected.

At first, we observed the model overfitting the
training data: test loss was increasing each epoch
while training loss was decreasing. We tried ma-
nipulating the dropout probabiltiy to no avail. We
then ‘detached’ the encoder from the model such
that the weights in the encoder weren’t updated
in the training of EncodedContext. This was to
reduce the number of parameters being updated
and thereby limit the expressivity of the model
and also bring the model’s number of parameters
to parity with the other baselines. This seemed
to solve the overfitting, but the accuracy only in-
creased by a couple percentage points.

We then experimented with learning rates, num-
bers of hidden layers, and sizes of hidden layers, in
the hopes that the model just needed more classi-
fication power, capability to escape local minima,
etc. We also tried increasing the size of the train-
ing data for the Encoder-Decoder; we switched
to training on 200k examples from Reddit, as op-
posed to 50k examples from the Cornell Movie-
Dialogs Corpus. Neither of these strategies were
successful.

Then as a sanity check, we substituted the en-
codings in EncodedContext with random tensors
and found that the model performed much worse.
This suggested that the encodings added some sig-
nal, but much less signal then noise, as evidenced
by the relative performance of EncodedContext



and NoContext. It also indicated that the model
doesn’t learn to ignore the encodings.

The next step would be to iterate on the
Encoder-Decoder to improve the context encod-
ings. Some possibilities are to add an atten-
tion mechanism over the hidden states in the de-
coder, or to revert to a more traditional language-
modelling objective, in which the decoding is a
sentence, as opposed to a vector.

6 Conclusion

Although EncodedContext didn’t perform well,
we note that NoContext was outperformed by
SimpleContext. Therefore, while we find no
evidence that EncodedContext was an effective
model of context, we have evidence for the claim
that context is helpful for predicting sentiment in
the EmoContext task.

References
Rami Al-Rfou, Marc Pickett, Javier Snaider, Yun-

Hsuan Sung, Brian Strope, and Ray Kurzweil. 2016.
Conversational contextual cues: The case of person-
alization and history for response ranking. CoRR,
abs/1606.00372.

Cristian Danescu-Niculescu-Mizil and Lillian Lee.
2011. Chameleons in imagined conversations: A
new approach to understanding coordination of lin-
guistic style in dialogs. In Proceedings of the Work-
shop on Cognitive Modeling and Computational
Linguistics, ACL 2011.

John Firth. 1962. Studies in Linguistic Analysis.

Umang Gupta et al. 2017. A sentiment-and-semantics-
based approach for emotion detection in textual con-
versations. arXiv preprint arXiv:1707.06996.

Ryan Kiros et al. 2015. Skip-thought vectors. NIPS.

Edward Loper and Steven Bird. 2002. Nltk: The natu-
ral language toolkit. In Proceedings of the ACL-02
Workshop on Effective Tools and Methodologies for
Teaching Natural Language Processing and Com-
putational Linguistics - Volume 1, ETMTNLP ’02,
pages 63–70, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Tomas Mikolov et al. 2013. Distributed representa-
tions of words and phrases and their composition-
ality. NIPS.

Matthew Peters et al. 2018. Deep contextualized word
representations. NAACL.

Yinfei Yang, Steve Yuan, Daniel Cer, Sheng-yi Kong,
Noah Constant, Petr Pilar, Heming Ge, Yun-Hsuan
Sung, Brian Strope, and Ray Kurzweil. 2018.

Learning semantic textual similarity from conversa-
tions. CoRR, abs/1804.07754.

Edward N. Zalta. 2018. Gottlob frege. In Edward N.
Zalta, editor, The Stanford Encyclopedia of Philos-
ophy, summer 2018 edition. Metaphysics Research
Lab, Stanford University.

http://arxiv.org/abs/1606.00372
http://arxiv.org/abs/1606.00372
https://doi.org/10.3115/1118108.1118117
https://doi.org/10.3115/1118108.1118117
http://arxiv.org/abs/1804.07754
http://arxiv.org/abs/1804.07754

