Miranda Christ CSCI 2951M
Rohan Jha Hardness vs. Randomness October 16, 2019

We first present a brief summary of the paper; we then take a deep-ish dive into the con-
struction of K-M designs; and we finally discuss our implementation of the Nisan-Wigderson
pseudorandom generator (PRG).

Summary

The aim here is to generate “many” pseudorandom bits, given “a few” truly random bits.
By pseudorandom, we mean indistinguishable from truly random by any small circuit. We
want to accomplish this efficiently, namely in exponential time with respect to the size of
the generator’s input. The existence of such a generator, with a further restriction on the
size of its input, implies that we can deterministically simulate polynomial-time randomized
decision algorithms in polynomial time. While this existence is contingent on an unproven
assumption, this paper makes a significant step towards showing that P=BPP.

Yao’s lemma

Yao’s lemma helps to motivate the results of this paper. We present the following general-
ization of the lemma that’s included in the paper. Note that if a generator G is quick, then
G is in DTIM E(2°0), where [is the size of the random seed that G takes as input.

Lemma (Yao’s). If there exists a quick pseudorandom generator (PRG) G : l(n) — n then
for any time constructible bound t = t(n) : RTIME(t) € DTIM E(2°00())

The intuition here is as follows. Assume that we have a PRG that fools circuits of some size
into thinking that its outputs are truly random. Now, consider an arbitrary circuit C' of that
size, and one of two cases: (1) we pass as input a truly random string, or (2) we pass as
input a string that was generated by our PRG. If the outputs are different, on average, then
we could use C' to distinguish between random and pseudorandom inputs, which contradicts
the assumption that our PRG fools circuits of that size. Now with the assurance that the
outputs of C' will be similar in both cases, we’re able to run the PRG on each possible input
to our generator, then pass each pseudorandom number into C' as input. It can then be
shown that the ‘majority vote’ of the 2! iterations of C' is surely the right answer.

A corollary, and the main takeaway, is that BPP C P is implied by the existence of a quick
PRG, for which the input size is O(logn). The goal of the paper is to build such a generator.
It’s also worth noting that the authors are able to relax the usual condition that the PRG
runs in polynomial time by insisting that the inputs to the PRG are of size O(logn).

Generator

Since our goal is to generate bits that are “hard” for a small circuit to differentiate from
random bits, we need to make some sort of hardness assumption, namely the existence of a
“hard” function.

Miranda Christ CSCI 2951M
Rohan Jha Hardness vs. Randomness October 16, 2019

Definition ((¢, S) — hard). Let f:{0,1}" — {0,1} be a boolean function. We say that f is
(€,.S) — hard if for any circuit C of size S,
PrC() = f@)] — 5 | < 5
rlC(x) = f(z)] — = =
2 2
where x is chosen uniformly at random in {0,1}". In other words, there is no sufficiently
small circuit that can reproduce our function’s behavior on significantly more than half the
inputs.

In particular, we assume there exists a function f that’s (#,S) — hard, where S is some
polynomial. The construction of the generator follows directly from this hard function. We
generate each pseudorandom bit by applying our hard function to a subset of O(logn) truly
random bits. We reiterate that the existence of this generator implies BPP C P by Yao’s
lemma.

In order to prove that our generator is pseudorandom, we derive a contradiction from the
existence of a circuit that can distinguish our pseudorandom bits from truly random bits with
greater than % probability. More specifically, we use the existence of such a distinguisher to
imply that f is not hard. We give a short sketch of the proof, which relies on the choice of
the subsets (we’ll discuss this later).

Suppose we have a circuit whose output differs by at least % given a pseudorandom input ver-
sus a truly random input. Applying Yao’s lemma about hardness amplification and applying
a hybridization argument allows us to convert this advantage to predict one pseudorandom
bit based on the others. In other words, we can construct a circuit D such that

PrID(ys, i) =9 — 5 >

where the y;’s represent pseudorandom bits and the probability is over the truly random bits
used to generate them. Note that y; = f(x1,...,x,,) for some subset of the truly random
x’s, and by another averaging argument, we can fix the other random x’s to constants and
preserve our advantage. We observe that the bits that each y; depends on are fixed except
for those in the intersection of its subset and 1, ..., x,,. We've now written f(z1,...,x,,) as
a function of only these bits in the intersections, and with sufficiently small intersections, f
depends on few variables and can be computed with a small circuit, just by using CNF.

We therefore want to minimize the seed length, while keeping the intersection of any pair of
subsets small. This nontrivial problem motivates K-M designs.

K-M designs

We first present the definition of a K-M design from the paper.

Definition (K-M design). A collection of sets {Si,...S,}, where S; C {1,...1} for all 4, is
called a (k-m)-design if |S;| = m for all ¢ and |S; N S;| <k for all ¢ # j.

Miranda Christ CSCI 2951M
Rohan Jha Hardness vs. Randomness October 16, 2019

We note that [is a parameter in our control. In the context of the paper, however, [is the
size of the random seed that the generator takes as input. This implies that number of seeds
(and the time to simulate a random algorithm) is exponential in [. It might be helpful to
look at the generation of K-M designs in light of this context: we want the smallest possible [
such that we can satisfy the requirement that the intersections between S; and S; are small.
It’s also worth noting that this problem would be trivial if we didn’t care about the size of [.

Take 1

We'll now describe the method in the paper for generating these K-M designs for [= O(m?).
This will prove the following lemma.

Lemma. For all integers n and m, such thatlogn < m < n, there ezists a (logn, m)-design,

where S; C {1,...1} for all i and I = O(m?).

In broad terms, we’ll define a polynomial (on a finite field) for each of the n sets. We’ll then
apply each polynomial to the same set of m inputs to yield n sets of m elements. These
polynomials are helpful because we can bound the number of times that distinct polynomials
can intersect, which implies a bound on the size of the intersection of any two sets.

We start by constructing a finite field. Note that we need a field that’s large enough for the
number of distinct polynomials to be larger than n (we show below that this is the case).
We find an m/ that’s a prime power, such that m < m’ < 2m. This can be done by finding
a power of 2 in the interval [m,2m). We then have, by algebra, that the integers mod m’
are a field, under addition and multiplication. We’ll refer to this field as GF(m') (short for
‘Galois field’). We finally set [= (m/)?, in order for the mapping below to be well-defined.

Next, we define a mapping f from {1,...1} to (a,b)|a,b € GF(m'). We’ll use this to translate
between the inputs and outputs of our polynomials and {1,...1}. Because [= (m/)?, we have
that elements in {1,...[} can be expressed as a4+ b-m’ for a unique (a, b) |a,b € GF(m) (we
can think of writing the elements in {1,...[} in a grid of dimension m’ x m’). We define f(z)

as this (a, b), which yields that f~*((a,b)) is a + bm'.

We now describe the algorithm. We select n distinct polynomials py, . .. p,, on GF(m') with
degree at most logn. The fact that (m/)°¢"*! > n implies that there are enough such
polynomials. We then build a set S; of our design by computing b = p;(a) for each a in
{1,...m} and adding each f~*((a,b)) to S;. Because f~'((a1,b1)) = f~'((ag,b2)) if and only
if a; = as and b; = by, having distinct a’s for each element of S; implies that the elements of
S; are distinct.

We finally note that this is a valid K-M design. First, each set has m elements. Second,
the intersection between any two sets is at most logn because two distinct polynomials of
degree logn can intersect at no more logn points (because their difference, which is also a
polynomial of degree logn, can have no more than logn roots).

Miranda Christ CSCI 2951M
Rohan Jha Hardness vs. Randomness October 16, 2019

Take 2

The authors also note that we can improve [= O(m?) to | = O(mlogm). We’'ll discuss this
briefly. Looking back on Take 1, [is a function of the size of our field, which must be larger
than m in order for the number of distinct polynomials (with fixed degree) to be higher than
n. The guiding principle here is to improve (decrease) the dependence of the number of
distinct polynomials on the size of the field, and we find that this dependence is better for
multivariate polynomials. We’ll hand-wave through a short example. We consider the two
following polynomials on the same arbitrary finite field:

fl = (alx + bl)(agfﬂ + bg)(agll? + bg)(a4$ + b4)(a5:1: + b5)(a6x + b(;)
fo = (17 + by)(azx + by)(azx + bs)(asy + ba)(asy + bs)(asy + bs)

We note that both have six roots, but f5 yields more distinct polynomials because fewer
terms combine. Therefore, if we're using multivariate polynomials, we're able to reduce the
size of our field, while ensuring that the number of distinct polynomials remains high enough.
This yields smaller [, assuming a strategy that’s similar to that in Take 1.

Building a PRG

In this section, we simulate a Nisan-Wigderson pseudorandom generator and compare the
resulting strings to a truly random strings. Note that since the existence of a hard function
hasn’t been proven, we couldn’t use one. Instead, we use f : {0,1}" — {0,1} where f(s) =
the parity of the sum of the bits of s. f is in fact very easy to compute, but it still helps us get
some intuition. The bits it generates look “pretty random,” but still significantly different
from truly random. This indicates that Nisan-Wigderson’s method is pretty good, while also
motivating the need for a truly hard function. We also find that using more random bits
leads to a better simulation of randomness.

In our plots below, we examine the distribution of the number of ones in pseudorandom
vs. truly random strings. We do so by creating a (logn, m)-design and applying f to each
resulting subset. We generate 10,000 each of pseudorandom and random strings of n bits.
We plot the number of strings containing x ones vs. the number of ones. The truly random
case should approach the binomial distribution, which we plot as well.

Note that in figures 1 and 2, we generate fewer pseudorandom bits than we have random
bits. We include these figures because as the number of generated bits grows, the distribution
becomes tighter, and it’s more difficult to visually distinguish random from pseudorandom
(though they remain significantly different). We include figure 3 to illustrate an example
where we generate more pseudorandom bits (256) from fewer truly random bits (81). Though
less striking, the difference in distributions is still apparent.

While clearly different from the truly random strings, our pseudorandom strings look fairly
random. This gives some intuition that the Nisan-Wigderson generator performs reasonably

Miranda Christ
Rohan Jha

Hardness vs. Randomness

well, even with such an “easy” function. We also note that these plots imply that the outputs
of our PRG are easily distinguished from truly random strings. A distinguisher might count
the 1’s in the input (let this number be), then look at the plots to determine whether
Pr[N | random] is higher than Pr[N | our PRG]J, or vice versa. This is expected, since our

function isn’t hard.

3500
3000
2500 -
2000
1500 |-
1000 -

500 -

Figure 1:

2500
2000 -
1500 -
1000 |-

500 |-

10-bit strings, with 25 truly random bits

~a0

o o”

\©o
o-
L

Figure 2:

10-bit strings, with 81 truly random bits

CSCI 2951M
October 16, 2019

Miranda Christ CSCI 2951M
Rohan Jha Hardness vs. Randomness October 16, 2019

600
8 e
® binomial
500 -
&
| ©
400 ~ $i|6
g
| &
300 % I‘
? 9
8 g
200 - o |
o 9@
s ¢
100 - f @
§ %

0 50 10 150 200 250 300

Figure 3: 256-bit strings, with 81 truly random bits

