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Introduction

We hope to provide some motivation and intuition for the proof of the PCP theorem. We
first introduce the theorem itself, outline the proof, then examine the gap amplification and
composition steps specifically.

Statement of theorem

We’ll start by talking about verifiers in general terms. We consider a verifier V , a language L,
an x that might be in L, and a corresponding proof p. Very informally, V does the following:
(1) takes in some random bits; (2) looks at x; (3) chooses some bits to query from p; (4)
decides the bit strings for which it will accept x; (5) queries the bits from p and either accepts
of rejects x.

Now, we say that a language L is in PCP[r, q] if there’s a verifier V , that takes in O(r)
random bits in (3) and reads O(q) bits from the proof in (5), such that the following holds:

1. (Completeness) If x ∈ L, there’s some proof p such that V will always accept x.

2. (Soundness) If x /∈ L, there’s no proof p for which V will accept x with more than 1
2

probability.

Having defined PCP, we can cleanly state the PCP theorem, as follows.

Theorem (PCP 1). NP ⊂ PCP[log n, 1]

In other words, for every language in NP, there’s a verifier that needs only read a constant
number of bits from a proof.

Equivalence with inapproximability

The PCP Theorem was found to be equivalent to statements about the inapproximability of
some problems. Therefore, we’ll prove the theorem by showing that one of these problems,
constraint satisfication (CSP), is inapproximable.

We’ll start by introducing the problem. Assume that we’re given a set of variables V , some
alphabet of values Σ that the variables can take, and a set of constraints C on k-tuples of
variables. These constraints, for example, might take the form: (x, y) must be (1, 2) or
(2, 3), where x, y ∈ V and 1, 2, 3 ∈ Σ. The CSP problem is to determine whether all of the
constraints in C can be satisfied by an assignment of V to Σ. We note that this is NP-Hard
(it’s straightforward to reduce from k-colorability).

Now, to talk about the approximability of the problem, we define UNSAT (C) as the minimum
(over assignments) of the proportion of violated constraints in C. For instance, if all the
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constraints in C were satisfiable by some assignment, then UNSAT (C) would be 0. We also
define UNSATσ(C) as the proportion of violated constraints with assignment σ.

We make the claim that the following statement is equivalent to the PCP theorem.

Theorem (PCP 2). It’s NP-Hard to determine whether UNSAT (C) = 0 or UNSAT (C) ≥ 1
2
.

We’ll discuss why PCP 1 is implied by PCP 2 (this is the direction we need for the proof).

Proof. We’ll construct an appropriate verifier V for approximate constraint satisfaction (Approx-
CSP), as described in the above theorem, in order to show that Approx-CSP is in PCP[log
n, 1]. We assume the same notation as above, and we note that the proof P for some C is
the assignment of variables. V (uniformly) samples a single constraint c from C, then queries
P for the assignment of the constant number of variables in V that are included in c. V
accepts x if and only if c is satisfied. Let’s make sure that V is complete and sound. If
UNSAT (C) = 0, then there’s some assignment of variables (proof) such that all constraints
are satisfied and V will always accept C. If UNSAT (C) ≥ 1

2
, then the probability of an

arbitrary constraint begin violated will be greater than 1
2

for every assignment of variables
(proof), and V will reject C with probability greater than 1

2
. Therefore, we conclude that

Approx-CSP is in PCP[log n, 1], and because Approx-CSP is NP-Hard, this implies PCP
1.

Again, the upshot of this discussion is that we can prove the PCP Theorem by showing
that Approx-CSP is NP-Hard. We’ll do this reducing an arbitrary instance C of CSP (which
is NP-Hard) to an instance C ′ that can be solved by Approx-CSP. This is equivalent to
transforming C to C ′ such that the following holds: if UNSAT (C) = 0 then UNSAT (C ′) = 0,
and if UNSAT (C) 6= 0 then UNSAT (C ′) ≥ 1

2
. This transformation is the gap amplification.

Outline of strategy

We first outline how to represent an instance of CSP with a graph – this is the representation
we’ll prefer. Given some CSP, we construct a graph G in which the vertices represent variables
in V that take on values from our alphabet Σ, and edges correspond to constraints in C on
the two variables at the endpoints.

We’ll now give a very broad overview of the reduction.

1. Preprocess the graph into a “nicely structured” graph for the powering step. This
involves making our graph into an expander, similar to the process in Reingold’s paper.

2. Amplify the minimum fraction of unsatisfied constraints by powering the graph. This
make vertices “care” about the value of vertices that are separated by several edges
(whereas originally, we cared only about the values of vertices that were separated by
one edge). Crucially, this increases the UNSAT value of the constraint graph by a con-
stant factor.
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However, we note that the amplification makes the alphabet exponentially larger; the “values”
in the constraints are now a series of values from the original alphabet. The increased
alphabet size poses a problem because we wish to show that need only read a constant
number of bits from the proof. However, if the alphabet grows each time we power the
graph, and the number of powerings is logarithmic in the length of the proof, checking a
constant number of variable assignments in the powered graph requires reading more than a
constant number of bits. This motivates the next step.

3. Compose the powered graph with an assignment tester, essentially a smaller PCP. This
makes the alphabet a constant size while only decreasing the UNSAT value by a constant
factor.

Gap amplification

In this step, we power the constraint graph G by some constant t, which yields Gt. We’ll
start by talking about the structure of the powered graph: the set of vertices is the same,
and we have an edge between u and v in Gt if we can take a t-step walk from u to v in
G. The alphabet and the constraints are a bit trickier. A vertex (variable) v in Gt takes
an O(dt)-tuple of values in Σ: one for itself, and the remaining for every vertex that can be
reached with a d t

2
e-step walk from v. We think of this latter group of values as v’s opinions of

its neighbors (we’ll be more explicit about their role in a couple sentences). In this sense, the
size of the alphabet is blown up considerably (to |Σ|O(dt)). We turn to the constraints. We
recall that there’s a one-to-one mapping from edges in Gt to t-step walks in G. We denote an
edge in Gt by E, its endpoints by u and v, and the corresponding walk in G as (e1, e2, . . . et),
where each ei is an edge in G. The constraints, now, become more ‘powerful’, in that they
enforce that each constraint ei on the walk in G is satisfied by u and v’s opinions of the
incident vertices to ei and that the endpoints of the edge in Gt have the same ‘opinion’ about
each vertex on the walk in G.

It’s worth thinking about what powering is doing, intuitively. We consider some edge (u, v)
in G that’s violated by an assignment σ. Assuming the same assignment, this violated edge
in G might induce others to be violated in Gt, namely those incident to vertices with opinions
about u and v that violate (u, v). We like Paul’s metaphor that if u and v are squabbling
neighbors in G, then the whole neighborhood is involved in the conflict in Gt.

We’ll now state the main lemma about gap amplification and give some intuition about the
proof.

Lemma (Gap amplification). Let λ be a constant with 0 < λ < 1. If G is d-regular,
with a self loop on each vertex, and λ(G) ≤ λ, then the following holds: UNSAT (Gt) ≥
O(
√
t) ·min(UNSAT (G), 1

t
).

We let σ′ be the assignment inGt that minimizes UNSAT (Gt). In order to relate UNSAT (Gt)
with UNSAT (G), we need to relate σ′ with an assignment in G because UNSATσ′(Gt) =
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UNSAT (Gt). Note that we get to pick an assignment σ in G because UNSAT (G) ≤
UNSATσ(G) for any σ. With this in mind, we let σ be the assignment in G where the
value of each vertex is the majority opinion of its neighbors in Gt. In broad strokes, this σ
makes it easier to analyze the opinions of a vertex’s neighbors in Gt. Now, putting everything
together, we need only show that UNSATσ′(Gt) > O(

√
t) · UNSATσ(G).

We’ll just give the intuition. An edge from (u, v) E in Gt will be violated if the following
holds: (1) some (u′, v′) is violated in the corresponding walk in G, (2) u’s opinion of u′

matches u′’s value, and (3) v’s opinion of v′ matches v′’s value. We define this as E being
‘hit’ by e, and we let NE be the expected number of hits. We’ll proceed by analyzing how
often E will be hit (one is enough for E to be violated). There are other cases in which E
will be violated, but this turns out to be enough for the analysis.

We need to show that the probability of a hit in Gt is fairly high, relative to the probability
of an edge in G being violated. We achieve this by constructing a Chebyshev-like bound
on the probability, using the first and second moments of N (this is comparable to showing
that N has a high mean and low variance). We consider some vertex v that’s incident to a
violated edge in G. To estimate the first moment, we use the fact that the v’s neighbors are
‘likely’ to have the same value as v in Gt because v’s value was assigned by a majority vote.
And to estimate the second moment, we use the fact that G’s expansion properties make it
unlikely for walks to remain on violated edges. If this were not the case, then N might be
much higher for some edges in Gt than others, which means, intuitively, that the variance of
N would be higher.

Alphabet reduction

Recall that in this step, we compose the constraint graph with a “small PCP”, meaning we
turn each constraint into a decision problem and use a PCP to check whether a variable
assignment satisfies it. Observe how this would help us: a constraint over the larger alphabet
in the powered graph is essentially a Boolean circuit, a decision problem that PCP can
solve. Assuming PCP works here, we can read a constant number of bits from a solution (an
assignment of variables) to this Boolean circuit and determine whether the constraints are
satisfied. We call the “small PCP” an assignment tester:

Definition (Assignment Tester). An assignment tester with alphabet Σ0 and rejection prob-
ability ε > 0 is an algorithm P whose input is a circuit Φ over Boolean variables X, and
whose output is a constraint graph G = 〈(V,E),Σ0, C〉 such that V ⊃ X, and such that the
following hold. Let V ′ = V \X, and let a : X → {0, 1} be an assignment.

• (Completeness) If a ∈ SAT(Φ), there exists b : V ′ → Σ0 such that UNSATa∪b(G) = 0

• (Soundness) If a /∈ SAT(Φ), then for all b : V ′ → Σ0, UNSATa∪b(G) ≥ ε·rdist(a,
SAT(Φ)).
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We can make a few observations from the definition, first that the set X of variables in the
boolean expression is a subset of the set V of nodes in the resulting constraint graph, so we
are creating more variables. Since we care about examining a constant number of constraints,
each of which contains q variables (since we use q-ary constraints), increasing the number of
variables does not make our job harder. Most importantly, we get a new alphabet Σ0, which
we claim can be of constant size.

Using an assignment tester should feel a bit circular, since it is nearly the same as the
PCP construction we’re trying to prove works. The key here is that while in our large
construction the number of constraints is limited, the constraints we use assignment testers
for are constant size, and therefore the assignment testers can have any number of their own
constraints without hurting efficiency.

Thus the overall tradeoff is decreasing the alphabet size, while increasing the number of
variables and the number of constraints.

A notable difference in the assignment tester compared to our overall construction is the
UNSAT value of an invalid variable assignment. In the assignment tester, the UNSAT
value is at least ε· rdist(a, SAT(Φ)) as opposed to 1

2
. This is a result of looking at the

constraints very locally, which doesn’t ensure that a given assignment satisfies all constraints
simultaneously. For example, variable v could take on value a1 in constraint c1 but value a2
in constraint c2 and satisfy both.

To remedy this, we want to change the space of assignments we consider so valid assignments
are far from each other in terms of relative distance. Then two assignments differing by one
variable value cannot both be valid, and we ensure that a single variable does not take on
different values in different constraints. Achieving this is nontrivial, and we won’t go into
depth here. We can verify our intuition with the definition of the assignment tester, though,
by seeing that increasing the relative distance between an invalid assignment and the closest
valid assignment increases the UNSAT value. This means the number of constraints satisfied
by inconsistently valued variables is reduced as desired.

5


