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This work is based on Claude Shannon’s A Mathematical Theory of Communication [1]. We also based
much of the second section on Cover and Thomas’ Elements of Information Theory [2].

1 Introduction to entropy

Consider a scenario in which Alice wishes to send a message to Bob. Available to her is a channel, through
which she can transmit her message to Bob in the form of bits. Bob then decodes those bits to obtain Alice’s
original message.

This channel can be limited in terms of both accuracy and speed; the channel can accommodate a certain
number of bits per second, and some subset of these bits may become corrupted. The question Shannon
wishes to answer given these constraints is:

How much information can Alice send to Bob?

In Shannon’s model, we think of individual messages as elements of a specified message set M. Notice that
if this message set contains only two messages; for example, M = {hello, goodbye}, Alice can encode hello
as 0 and goodbye as 1 and send only a single bit, despite the messages themselves appearing much longer.
Notice also that if there were three possible messages in our message set, Alice would need to use more than
one bit.

Shannon proposes a metric for the information contained in such a message set. As demonstrated in the
above example, this metric depends not on the messages themselves but rather on the size of the message
set and the distribution of the messages, as we will see.

Shannon adds another layer to the message set: the messages appear according to some known probability
distribution. As an analogy, think of words in the English language; the appears much more often than
defenestrate. It then makes sense to assign more frequent messages shorter encodings, since Alice will
need to send them more often. Observe that this distribution also affects how laborious it is for Alice to
communicate her messages. For example, consider the message space M = {hello, goodbye, ttyl}. If hello
and goodbye appear with 49% probability and ttyl appears with 2% probability, Alice can encode hello as 0,
goodbye as 1, and ttyl as 01. She then expects to transmit roughly 1 bit per message on average. In contrast,
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Figure 1: Alice and Bob’s communication via a channel
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Figure 2: Binary symmetric channel

if hello, goodbye, and ttyl occur with equal probability, Alice expects to transmit well over 1 bit per message
on average.

Therefore, Shannon’s metric for information should depend on the distribution of the message space in
addition to its size. Generally, more messages, each with significant likelihood, increases the amount of
information as we have seen in the above examples. This leads us to Shannon’s definition of entropy. We
denote the entropy of a random variable X over a sample space of size n as H(X), defined:

H(X) =Y pilogp;
=1

Where p; is the probability of the ith value. H is in fact the only such function satisfying three desirable
properties:

1. H is continuous in the p;.

2. For uniform distributions with probabilities p1, ..., p, where all the p;’s are equal, H is monotonically
increasing with n. In other words, increasing the size of the message space generally increases entropy.

3. If a random variable X is expressed in terms of a series of choices from other random variables, H
should be the weighted sum of the entropies of these other variables. See Shannon’s paper for the
precise statement, which is a bit long. This requirement essentially says that H is consistent under
equivalent expressions of X, and H is easily calculable given the entropies of the random variables in
terms of which X is represented.

2 Discrete channel with noise

Again, we can think of a channel as a system for communicating information. In the real world, this might
be a radio wave or a telephone signal, where the source can become distorted. In this section we consider the
case of a discrete (the inputs and output are discrete) channel with noise (there’s some probabilistic mapping
from inputs to outputs). We’ll introduce a concrete example. Consider a channel in which the information
source is trying to transmit a sequence of zeros and ones and some of the bits are flipped. By this, we mean
that some zeros are received as ones and some ones are received as zeros. This can be visualized with Figure
2, which is an example of a binary symmetric channel (BSC) where bits are corrupted with probability p.

Shannon is interested in the question of how much information can be transmitted error-free over a noisy
channel. He introduces the definition of capacity and shows that it provides an upper bound on the rate of
transmission over the channel. I here is the mutual information, which is loosely a measure of the extent of
correlation between two random variables. This corresponds with our intuition that a channel in which the
output is not very correlated with the input should have a low capacity.

Definition (Capacity). Let X be an information source and Y the recipient. Then



C = maz(I(X:Y)) = H(Y) - H(Y|X), (1)
where the maximum is taken over probability distributions for X.

Theorem (Capacity of BSC). Assume a BSC as in Figure 2. Its capacity is 1 — H(p), where H(p) =
—(plogp + (1 — p)log(1 — p)).

Proof.
I(X;Y) = H(Y) — H(Y|X)
=HY)-PX=0H{Y|X=0-PX=1)HY|X=1)
=H() - H(p)
< 1-— H(p) with equality when P(X =0)=P(X =1) = %
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We compute the capacities of specific BSC’s and verify that the definition corresponds with our intuition.
If p = 0 (meaning there isn’t noise), the capacity is 1. If p = 0.5 (meaning Y is independent of X), the
capacity is 0. And if p = 0.1, the capacity is somewhere in the middle (0.531). Noisier channels have lower
capacity, as we would expect. The central claim, now, of the channel coding theorem is that if the entropy
of the source (the rate) is below this capacity, then error-free communication is possible in the limit (as we
encode larger and larger blocks of messages). More precisely:

Theorem (Channel Coding). Let a discrete channel have the capacity C and a discrete source the entropy
per second H. If H < C' there exists a coding system such that the output of the source can be transmitted
over the channel with an arbitrarily small frequency of errors.

We'll give a rough sketch of the proof, with the emphasis on intuition. In the proof, we consider encoding
and sending sequences of messages rather than individual messages. To motivate the use of sequence,
we consider the following example. If we have 3 possible messages mq,mso, m3 each occurring with equal
probability, we require an average of % bits to encode them individually, since without loss of generality
we must use 1 bit for m, 1 bit for mo, and 1 bit for m3. However, if we instead encode them as pairs
(e.g., (m1,m1) = 0,(m1,ma) — 1,..., (ms, ms) — 111), we require on average % = 1—99 bits per pair
and roughly 2.05 bits per symbol. By block coding sequences of messages in this fashion, we decrease the
expected encoded length.

Another consequence of working with sequences of messages rather than individual messages is that
many of the possible sequences become increasingly unlikely as the sequence length increases, by the law of
large numbers. We’ll start by discussing the remaining set of reasonably likely sequences, called the jointly
typical set. If we assume a sequence of i.i.d. random variables, we can consider its ‘empirical entropy’ to be
—Llogp(z™). We note the following:

1 1
- logp(z™) = ——~ > log pla:)
— —E(log(p(z)) as n gets large by the LLN
= H(X)

Informally, the typical set is the set of sequences with empirical entropy close to the true entropy, and by
the LLN, the probability a random sequence is in the typical set approaches 1. The jointly typical set A”, is
defined (informally) for a sequence of length n of i.i.d pairs (2™, 3™) (but X and Y need not be independent)
as the set of sequences for which the empirical entropy of ™ is close to H(X), that of y™ is close to H(Y),
and that of (z™,y™) is close to H(X,Y). The probability, again, that a randomly chosen pair is in the jointly
typical set approaches 1. Further, we state without proof the following from [2]:

P((X,Y) € A") ~ 27"I(X3Y) where X and Y are independent (2)



|A?| < 2TL(H(X,Y)+€) (3)

(2) means that independent pairs of X and Y are very unlikely to be jointly typical (while observed pairs
of X and Y are almost certain to be jointly typical). To make sense of this, let’s return to the BSC. We can
consider repeated uses of our BSC to be pairs (2™, y"), where 2™ is the input and y” is the output. For less
noisy channels, then, X™ and Y™ will be more correlated, mutual information will be higher (as we discussed
earlier), and there’s a lower probability that independently chosen pairs will be jointly typical. This makes
sense; if we consider a channel that is not very noisy, then certain pairs (z™, y™) will be relatively more likely,
the typical set will be smaller (as stated by (3)), and a given y™ will be jointly typical with fewer x™.

Above we've established that a relatively small subset of input-output pairs ™ and y™ occur together
with reasonable probability (with larger subsets for noisier channels). In other words, given an output from
the channel y™, there are few inputs that likely induced that output. And the number of likely inputs
depends on the mutual information; if the source has lower mutual information, there are more likely input
sequences. We can then in theory construct a coding scheme where we decode an output by choosing the
input with which it is jointly typical, requiring longer transmission sequences for noisier channels.

We’ll make the above intuition concrete and assume that we construct a system in which we’re able to
send a message from a set of size 2% with n uses of the channel. R is the rate of the channel, and it describes
how the number of possible messages scales with respect to the number of uses of the channel. Note that in
the noiseless setting, we’ll be able to communicate at rate 1.

Now, we’ll briefly sketch the proof, now, of the following theorem, which is closely related to Shannon’s
version of the theorem above.

Theorem. If R < C then error-free communication is possible, as n (the number of uses of the channel)
becomes large.

First, a discussion of how it’s related to Shannon’s paper. Assume we can achieve error-free communica-
tion for 2" distinct messages. Now if we have an information source with entropy H < R < C, there will
only be 2" < 2" typical sequences, so error-free communication will be possible for these typical sequences
and in general because the probability of an observed sequence being typical converges to 1.

Now, we’ll describe a communication scheme and provide the outline of the argument that it’s asymp-
totically error-free if R < C' (as the number of uses becomes large).

We consider the following (naive) scheme. A codebook is constructed that maps each of the 2" messages
to some random binary code. After an output is received, we decode it by choosing the input with which it
is jointly typical. Possible sources of error then include:

1. A given input induces an output with which it is not jointly typical.
2. There are multiple inputs that are jointly typical with a given output.

Because the probability that 2™ and y™ are jointly typical converges to 1, the probability that (1) happens
goes to 0.

We can ensure that (2) happens rarely if we choose long enough sequences to describe few enough
messages. In other words, we want the sets of typical y™ and ™ corresponding to any two inputs =" and
&" to be disjoint. The size of the set of typical " converges to 2" (X) and the size of the set of typical y™
converges to 27 (Y). The size of the set of jointly typical ™ with a given y™ is %, which converges
to 2n(H(X,Y)—H(Y)) — gnH(XY) Yy definition of the jointly typical set. Therefore, the number of sequences
we can use as codewords before any of their typical outputs intersect is upper bounded by the number of
typical ™ divided by the number of jointly typical =™ with a given y™:

ZnH(X)
2 H(X[Y)

— 2n(H(X)7H(X|Y)) _ 2nI(X;Y) — 2nC

This argument can be extended to show that as long as R < C, we can communicate our messages with
arbitrarily low probability of error.
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